Search results for "Functional Principal Component Analysis"

showing 10 items of 19 documents

Air quality assessment via functional principal component analysis

2009

The knowledge of the global urban air quality situation represents the first step to face air pollution issues. For the last decades many urban areas can rely on a monitoring network, recording hourly data for the main pollutants. Such data need to be aggregated according to different dimensions, such as time, space and type of pollutant, in order to provide a synthetic air quality index which takes into account interactions among pollutants and correlation among monitoring sites.This paper focuses on Functional Principal Component techniques for the statistical analysis of a set of environmental data x(spt), where s stands for the monitoring site, p for the pollutant and t for time, usuall…

Air quality functional principal component analysisSettore SECS-S/01 - Statistica
researchProduct

Estimation of total electricity consumption curves of small areas by sampling in a finite population

2016

International audience; Many studies carried out in the French electricity company EDF are based on the analysis of the total electricity consumption curves of groups of customers. These aggregated electricity consumption curves are estimated by using samples of thousands of curves measured at a small time step and collected according to a sampling design. Small area estimation is very usual in survey sampling. It is often addressed by using implicit or explicit domain models between the interest variable and the auxiliary variables. The goal here is to estimate totals of electricity consumption curves over domains or areas. Three approaches are compared: the rst one consists in modeling th…

Big dataEnergyMSC: 62H25Functional principal component analysis[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Regression trees[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]Mixed modelsFunctional data[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]
researchProduct

STATISTICAL METHODS FOR THE DISCRIMINATION OF FOUR FORMS OF DIPLEGIA

FUNCTIONAL PRINCIPAL COMPONENT ANALYSISLINEAR DISCRIMINANT MODELDIPLEGIA
researchProduct

Principal components for multivariate spatiotemporal functional data

2014

Multivariate spatio-temporal data consist of a three way array with two dimensions’ domains both structured, temporally and spatially; think for example to a set of different pollutant levels recorded for a month/year at different sites. In this kind of dataset we can recognize time series along one dimension, spatial series along another and multivariate data along the third dimension. Statistical techniques aiming at handling huge amounts of information are very important in this context and classical dimension reduction techniques, such as Principal Components, are relevant, allowing to compress the information without much loss. Although time series, as well as spatial series, are recor…

Functional Data Analysis Functional Principal Component Analysis Multivariate Multidimensional DataSettore SECS-S/01 - Statistica
researchProduct

Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects

2014

Purpose/Objective(s) To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variatio…

Functional principal component analysisCancer ResearchMultivariate statisticsRadiationbusiness.industryKernel density estimationFunctional data analysisRegression analysisLogistic regressionConfidence intervalOncologyStatisticsPrincipal component analysisMedicineRadiology Nuclear Medicine and imagingNuclear medicinebusinessInternational Journal of Radiation Oncology*Biology*Physics
researchProduct

Comparing Spatial and Spatio-temporal FPCA to Impute Large Continuous Gaps in Space

2018

Multivariate spatio-temporal data analysis methods usually assume fairly complete data, while a number of gaps often occur along time or in space. In air quality data long gaps may be due to instrument malfunctions; moreover, not all the pollutants of interest are measured in all the monitoring stations of a network. In literature, many statistical methods have been proposed for imputing short sequences of missing values, but most of them are not valid when the fraction of missing values is high. Furthermore, the limitation of the methods commonly used consists in exploiting temporal only, or spatial only, correlation of the data. The objective of this paper is to provide an approach based …

Functional principal component analysisComplete dataMultivariate statisticsLong gapComputer sciencecomputer.software_genreMissing dataCorrelationFDA FPCA GAM P-splinesData analysisData miningImputation (statistics)Settore SECS-S/01 - Statisticacomputer
researchProduct

Functional Principal Components Analysis with Survey Data

2008

This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. FPCA relies on estimations of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and convergent. Under mild assumptions, asymptotic variances are derived for the FPCA’ estimators and convergent estimators of them are proposed. Our approach is illustrated with a simulation study and we…

Functional principal component analysisDelta methodCovariance operatorLinearizationPrincipal component analysisFunctional data analysisEstimatorApplied mathematicsContext (language use)Mathematics
researchProduct

A functional approach to monitor and recognize patterns of daily traffic profiles

2014

Functional Data Analysis (FDA) is a collection of statistical techniques for the analysis of information on curves or functions. This paper presents a new methodology for analyzing the daily traffic flow profiles based on the employment of FDA. A daily traffic profile corresponds to a single datum rather than a large set of traffic counts. This insight provides ideal information for strategic decision-making regarding road expansion, control, and other long-term decisions. Using Functional Principal Component Analysis the data are projected into a low dimensional space: the space of the first functional principal components. Each curve is represented by their vector of scores on this basis.…

Functional principal component analysisEngineeringbusiness.industryFunctional data analysisPoison controlFunctional approachTransportationManagement Science and Operations ResearchTraffic flowcomputer.software_genreTransport engineeringPrincipal component analysisOutlierData miningbusinessCluster analysiscomputerCivil and Structural EngineeringTransportation Research Part B: Methodological
researchProduct

Functional Data Analysis and Mixed Effect Models

2004

Panel studies in econometrics as well as longitudinal studies in biomedical applications provide data from a sample of individual units where each unit is observed repeatedly over time (age, etc.). In this context, mixed effect models are often applied to analyze the behavior of a response variable in dependence of a number of covariates. In some important applications it is necessary to assume that individual effects vary over time (age, etc.).

Functional principal component analysisMixed modelVariable (computer science)CovariateEconometricsFunctional data analysisContext (language use)Sample (statistics)Nonparametric regressionMathematics
researchProduct

Measuring Dissimilarity Between Curves by Means of Their Granulometric Size Distributions

2008

The choice of a dissimilarity measure between curves is a key point for clustering functional data. Functions are usually pointwise compared and, in many situations, this approach is not appropriate. Mathematical Morphology provides us with a toolbox to overcome this problem. We propose some dissimilarity measures based on morphological granulometries and their performance is evaluated on some functional datasets.

Functional principal component analysisPointwiseDynamic time warpingComputer sciencebusiness.industryFunctional data analysisPattern recognitionMathematical morphologyMeasure (mathematics)ToolboxComputingMethodologies_PATTERNRECOGNITIONArtificial intelligenceCluster analysisbusiness
researchProduct